Posted by : at

Category :


principal component analysis(PCA) āĻŦāĻšā§āĻ˛ āĻŦā§āĻ¯āĻŦāĻšāĻŋāĻ¤ Dimensionality Reduction Algorithm. PCA āĻŽā§āĻ˛āĻ¤ āĻāĻ•āĻŸāĻŋ āĻĄāĻžāĻŸāĻžāĻ¸ā§‡āĻŸā§‡ āĻĄāĻžāĻŸāĻžāĻ—ā§āĻ˛ā§‹āĻ° Orthogonal Projection ( āĻ˛āĻŽā§āĻŦ āĻ…āĻ­āĻŋāĻ•ā§āĻˇā§‡āĻĒ) āĻ–ā§āĻœā§‡ āĻŦā§‡āĻ° āĻ•āĻ°ā§‡āĨ¤ Orthogonal projection āĻāĻ° āĻŽāĻžāĻ§ā§āĻ¯āĻŽā§‡ PCA āĻĄāĻžāĻŸāĻžāĻ¸ā§‡āĻŸā§‡āĻ° āĻ¸āĻ°āĻŦāĻšā§āĻ› Variance āĻ–ā§āĻœā§‡ āĻŦā§‡āĻ° āĻ•āĻ°ā§‡, āĻœāĻžāĻ° āĻ¸āĻžāĻšāĻžāĻ¯ā§āĻ¯ āĻĄāĻžāĻŸāĻžāĻ¸ā§‡āĻŸ āĻāĻŦāĻ‚ Feature āĻŽāĻ§ā§āĻ¯ā§‡ linear-corelation āĻŦā§‡āĻ° āĻ•āĻ°āĻž āĻœāĻžāĻ‡!āĨ¤

āĻ†āĻ°āĻĨāĻžāĻ¤, āĻ†āĻŽāĻžāĻĻā§‡āĻ° āĻ•āĻžāĻ›ā§‡ āĻœāĻĻāĻŋ āĻāĻ•āĻŸāĻŋ āĻ¨āĻŋāĻĻāĻŋāĻļāĻ¤ āĻĻāĻžāĻ¤āĻžāĻ¸āĻāĻ¤ā§‡āĻ° linearlg corelated āĻ•āĻŋāĻ›ā§ āĻĢāĻŋāĻšāĻžāĻ° āĻĨāĻžāĻ•ā§‡ āĻ¤āĻžāĻ‡āĻ˛ā§‡ PCA āĻāĻ•āĻŸāĻž suitability orthogonal direction āĻ–ā§āĻœā§‡ āĻŦā§‡āĻ° āĻ•āĻ°āĻ¤ā§‡ āĻĒāĻžāĻ°āĻŦā§‡ āĻœāĻž āĻ†āĻŽāĻĻā§‡āĻ āĻĻāĻžāĻ¤āĻžāĻ¸ā§‡āĻ° āĻāĻ° āĻ¸āĻŽāĻ¸āĻ¸ā§āĻ¤ āĻĻāĻžāĻ¤āĻž āĻ•ā§‡ āĻāĻ•ā§āĻ¤āĻž direction āĻ āĻ¤ā§āĻ˛ā§‡ āĻ§āĻ°āĻ¤ā§‡ āĻĒāĻžāĻ°āĻŦā§‡āĨ¤

PCA āĻ•āĻ¤āĻ—ā§āĻ˛āĻŋ principal component āĻ¨āĻŋā§Ÿā§‡ āĻ—āĻ āĻŋāĻ¤, āĻšāĻ˛ā§āĻ¨ Principal component āĻ•āĻŋ āĻĻā§‡āĻ–ā§‡ āĻ¨ā§‡ā§Ÿ

Principal component : Principal component āĻšāĻ˛ā§‹ Initial Variable ( Raw dataset) āĻĨā§‡āĻ•ā§‡ āĻ¸ā§āĻ°āĻ¸ā§āĻ¤ Linear combination or mixure āĻāĻ° āĻŽāĻžāĻ§ā§āĻ¯āĻŽā§‡ āĻāĻ•āĻŸāĻŋ New Variable( New Dataset).

New Variable āĻŸāĻŋ āĻ•āĻ¤āĻ—ā§āĻ˛ Principal component āĻ¨āĻŋā§Ÿā§‡ āĻ—āĻ¤āĻŋāĻ¤āĨ¤ Principal component āĻāĻ• āĻŦāĻž āĻāĻ•āĻžāĻ§āĻŋāĻ• āĻšāĻ¤ā§‡ āĻĒāĻžāĻ°ā§‡āĨ¤ āĻ…āĻ°āĻĨāĻžāĻ¤ āĻāĻ•āĻŸāĻŋ āĻĄāĻžāĻ¤āĻžāĻ¸ā§‡āĻ¤ā§‡āĻ° āĻĄāĻŋāĻŽā§‡āĻ¨āĻļāĻ¨ āĻœāĻĻāĻŋ ā§§ā§Ļā§Ļ āĻšāĻ…āĻ‡ āĻ¤āĻŋāĻŦā§‡ āĻ¤āĻžāĻ° principal component hobe 100āĻ¤āĻŋāĨ¤ Principal component āĻ—ā§āĻ˛ āĻĻāĻžāĻ¤āĻžāĻ° āĻ‡āĻ¨āĻĢāĻ°āĻŽā§‡āĻļāĻ¨ āĻāĻ° āĻ‰āĻĒāĻ°ā§‡ āĻ­āĻŋāĻ¤ā§āĻ¤āĻŋ āĻ•āĻ°ā§‡ āĻ¨āĻŋāĻŽā§āĻ¨āĻ•ā§āĻ¤ āĻŦāĻŋāĻ¨āĻžāĻ¸ āĻ†āĻ•āĻžāĻ°ā§‡ āĻ¸āĻžāĻœāĻžāĻ¨ā§‡āĻž āĻĨāĻžāĻ•ā§‡ â€Ļâ€Ļâ€Ļâ€Ļ.

New variable āĻŸāĻŋ totally uncorrelated āĻšā§Ÿā§‡ āĻĨāĻžāĻ•ā§‡ āĻāĻŦāĻ‚ Initail variable āĻāĻ° āĻ…āĻ§āĻŋāĻ•āĻžāĻ‚āĻļ āĻ‡āĻ¨āĻĢāĻ°āĻŽā§‡āĻļāĻ¨ compressed āĻšā§Ÿā§‡ 1st pricipal component create kore thake.

PCA try āĻ•āĻ°ā§‡ āĻ…āĻ§āĻŋāĻ•āĻžāĻ‚āĻļ āĻ¨āĻŋāĻ°āĻ­āĻ° āĻ‡āĻ¨āĻĢāĻ°āĻŽā§‡āĻļāĻ¨ 1st principal component āĻ āĻ°āĻžāĻ–āĻžāĻ° āĻ¤āĻžāĻ°āĻĒāĻ° āĻ…āĻŦāĻļāĻŋāĻˇā§āĻŸ āĻ…āĻ§āĻŋāĻ•āĻžāĻ‚āĻļ āĻ‡āĻ¨āĻĢāĻ°āĻŽā§‡āĻļāĻ¨ 2nd principal component āĻ āĻ°āĻžāĻ–āĻžāĻ° āĻāĻŦāĻ‚ āĻāĻ‡āĻ­āĻžāĻŦā§‡ āĻ‡āĻ¨āĻĢāĻ°āĻŽā§‡āĻļāĻ¨ āĻāĻ° āĻ‰āĻĒāĻ°ā§‡ āĻ­āĻŋāĻ¤ā§āĻ¤āĻŋ āĻ•āĻ°ā§‡ principal component āĻāĻ° āĻŦāĻŋāĻ¨āĻžāĻ¸ create āĻšā§Ÿā§‡ āĻĨāĻžāĻ•ā§‡āĨ¤ āĻ¨āĻŋāĻŽā§āĻ¨ā§‡ āĻ›āĻŋāĻ¤ā§āĻ°ā§‡ āĻĻā§‡āĻ–āĻžāĻ¨ā§‹ āĻšāĻ˛ā§‹āĨ¤ picture hereâ€Ļâ€Ļ

āĻ‰āĻĒāĻ°āĻŋāĻ‰āĻ•ā§āĻ¤ āĻŦāĻŋāĻ¨ā§āĻ¨āĻžāĻ¸(higher information to lower information) āĻ†āĻ•āĻžāĻ°ā§‡ principal components āĻ—ā§āĻ˛āĻž āĻ¸āĻžāĻœāĻŋā§Ÿā§‡ āĻ–ā§āĻŦ āĻ¸āĻšāĻœā§‡ āĻ†āĻŽāĻ°āĻž āĻ•āĻŽ āĻ‡āĻ¨āĻĢāĻ°āĻŽā§‡āĻļāĻ¨ āĻ¨āĻˇā§āĻŸ āĻ•āĻ°ā§‡ āĻāĻ•āĻŸāĻŋ Lower dimensional Dataset( new Dataset) create hoi.

āĻ¸ā§āĻ¤āĻ°āĻžāĻ‚, āĻāĻ‡āĻ­āĻžāĻŦā§‡ lower information principal component āĻŦāĻžāĻĻ āĻĻāĻŋā§Ÿā§‡ āĻ…āĻŦāĻļāĻŋāĻ¸ā§āĻŸ principal component āĻ¨āĻŋā§Ÿā§‡ initail varaiable(Raw Dataset) āĻĨā§‡āĻ•ā§‡ new Variable ( new Dataset) create hoye thake.

Example : āĻ†āĻŽāĻ°āĻž āĻœāĻžāĻ¨āĻŋ āĻāĻ•āĻŸāĻž āĻĻāĻžāĻ¤āĻžāĻ¸ā§‡āĻ¤ āĻāĻ° dimension jodi 100D hoye tobe tar principal component o hobe 100ti. PCA jokhon dimension reduction kore tokhon low variance feature ke bad diye higher dimension theke lower dimension dataset create kore thake.. Orthat optimal principal component khuje ber korar jonno PCA sob somoi low information feature or low variance data ke noise hisabe bibecona kore. Ei noise feature gula PCA bad diye ekta notun dataset create kore thake jar dimension hoii Main dataset er dimension theke onkk kom ( deoend on infomation gather by each princiapl component).

Dhoren main datasert er name A. A datser er dimension hosce 100D ebong er principal component o 100ti. 100 ti principal component er mjhee 1st 20 principal component e 95% data information hold kore.

PCA tokhon 21-100 porjonto dimension er data ke noise hisabe bibchone kore ogula reomve kore dibe. Baki 20 principle component niye ekta new Dataset create kore B.

sutrang PCA apply kore, B dataset ti A dataset 95% information hold kore, higher dimensional dataset (A: 100 dimension) theke lower dimensional dataset( B : 20 dimension) create korbe.

Note :: Dekha gese noise feature or low variance data gula suoervied

About

Hello, My Name is Jahid Hasan. I love to Code and play with robotics and AI....

Star